Mock Objects in Xojo

Yves Meynard
Software Developer

Why Mock Objects? (2)

Don’t make expensive requests to the real object, talk
to the mock object

The mock has been told what to expect, and what to
reply — we can simulate errors at will

Test what requests the object makes as well as its
handling of all possible responses

Why Mock Objects?

For unit tests
When there are expensive dependencies

We know the requests that will be made and what
responses should be returned

Example: an invoice object reads its info from a
database. Create, fill then destroy a database, just for
one test?

What is a Mock Object?

Inexpensive to construct

Calling code must not see a
difference

The mock object knows what calls
it may receive

For each call, it knows the
response it must give

An unexpected call signals an error

We can ask if all expected calls
were made

How to code one?

* Must have the same interface as the object it mocks
* In Xojo, it must be a subclass of the mocked class

» Unless they can both implement the same Interface

Generic Mock Objects

In Lightspeed OnSite, we intercept calls to
L.SSDatabase and send them to LSDatabaseMock

Convenient, but ugly and clumsy.
Works because LSSDatabase is a singleton
Better approach: factor out the mocking logic

Mock any class by dropping in a mocking object as a
property

How do we substitute the
MockObject?

* “Dependency. Injection”

* |n the constructor: new Thing(mockFoo)
Most verbose approach

e |n a setter: thing->setFoo (mockFoo)
Must define a new accessor

2 USing gIObaI state:; #if BuildConstants.kIsUnitTestBuild
Not an injection, only: works for Singletons

Logic Flow

find('bar(0,1,3)")

Pieces of the Puzzle

XURequest: a function call with its arguments
XUReply: what the function call returns
XUEXxpectation: request + reply
XUExpectationList: a list of expectations

XUMockingObject: holds expectations (which must be
met) and stubs (which may be met)

Variants

* A Variant is a special data type in Xojo that can contain
any type of data, including arrays

» Parameters of a method call = an array of Variants

» Use ParamArray to write them in a natural fashion

ParamArray

Used in a Function statement to indicate that an
arbitrary number of parameters can be passed

* Function Foo(ParamArray nums As Integer) As Integer

« Foo(l, 2, 3,:7,:99) [/ 5 arguments

Foo(3,:0) // 2 arguments
Foo(3, “a”)

We need to pass an arbitrary number of parameters of
arbitrary type

XURequest o

m methodName As String
m arguments() As Variant

makeRequest (method name As String,
ParamArray args as Variant)

The syntax is simple:
XURequest .makeRequest (“open”, 5, “a”)

XUReply -+ XUExpectation J}e

* m content As Variant m request As XURequest

Shared method None which returns the shared m reply As XUReply

Propeitee Hane - dliRen wina 1) A bit verbose: new XUExpectation

XUReply.None (XURequest .makeRequest (“open”, 5, “a”),
XUReply.None)

We will improve this in the mock object

XUExpectationList “#¥ XUMockingObject i

m list() As XUExpectation m_expectations As XUExpectationList
S35 (Expectations are removed once invoked)

addExpectation(exp As XUExpectation) m stubs As XUExpectationList

(Stubs are not removed when invoked)
consumeRequest (reqg As XURequest,

remove_expectation As Boolean) As
XUReply addstub(...)

addExpectation(..)

: expect (method As String, args() As Variant)
consumeRequest (req, true) for expectations

consumeRequest (req As XURequest) As XUReply (consumes
ConsumeRequeSt (req, false) fOI’ StUbS a stub if it can, otherwise consumes an expectation)

validate (logs any unmet expectations)

Mocking an Object Mocking an Object (2)

Add a MockingObject as a property. Define methods to create Expectations in MockFoo

Intercept calls: ask the mocker to consume them expect (name As String, ParamArray args As Variant)

instead. and return its repl Dim request As new Request(name, args)
: ply mocker.addExpectation(request, Reply.None)

Foo.open(id As Integer, s As String) As Integer expect draw(x As Double, y As Double, s As String)

: : self.expect(“draw?”, X, y, 2)
MockFoo.open(id As Integer, s As String) As Integer
req = makeRequest(“open”, id, s) mock.expect draw(0.0, -5.0, “Bottom”)
Dim reply As XUReply = m mocker.consumeRequest(req) mock.expect draw(5.0, 0.0, “Right”)

return reply.m content.integervValue() mock . expect draw(0.0, 5.0, “Top”)

!
mock.expect draw(-5.0, 0.0, “Left”)

Our Classes Flies in the Ointment

spuvy Buoim ‘wosutiyy Mor @

‘ e H — hm<{ I H i * Properties
o

— * Object Parameters

* Operator_compare

©Tohn Atkinson, Wrong Hands « gocomics.comlwrong-hands wronghand

Properties *

Property access is not a function call: a mock object
can't intercept setting/getting a property.

“Yes it can!l Define them as computed properties in the
mock subclass!”

Bad news: those aren’t the same properties, even if
they have the same names.

Comparisons *

Let’s intercept calls to foo(c As Coords) Where coords is a
pair of boubles

Use expect foo(c As Coords) and do
if ¢ = expected coords then ...

Define coords.operator compare, Which returns -1, 0 or 1 to
define a total ordering on instances

How to compare 2-dimensional vectors? Xojo docs say: use
their lengths...

... which means that (0, 2) = (1.41, -1.41)

Method Signatures *

A generic MockingObject has to handle an array of
Variants for the method signature

But request signature matching can’t handle arbitrary
objects, €.J. Foo(bar As Bar)

Using Reflection to find a comparison method might
work, but this is going too far

Solution: don’t use a generic MockingObject in your
MockFoo

Where to use Mock
Objects?

Use a XUMockingQObject to intercept method calls with
simple parameters or arrays of such

For methods with messier signatures, break down
objects into their component properties when doing

comparisons
return lhs.x = rhs.x and lhs.y = rhs.y and ...

Property access cannot be intercepted unless the
mocked object itself uses computed properties

Design for Mocking Q&A

» Extract an interface Yves Meynard
» Use computed properties, not direct access yves.meynard@lightspeedhg.com
» This is what you should be doing for big, expensive

ject ! . . SRS
obleclaahviny Give us feedback on this session in the XDC app!

