
Mock Objects in Xojo

Yves Meynard
Software Developer
Lightspeed

Why Mock Objects?
• For unit tests
• When there are expensive dependencies
• We know the requests that will be made and what

responses should be returned
• Example: an invoice object reads its info from a

database. Create, fill then destroy a database, just for
one test?

Why Mock Objects? (2)
• Don’t make expensive requests to the real object, talk

to the mock object
• The mock has been told what to expect, and what to

reply — we can simulate errors at will
• Test what requests the object makes as well as its

handling of all possible responses

What is a Mock Object?
• Inexpensive to construct
• Calling code must not see a

difference
• The mock object knows what calls

it may receive
• For each call, it knows the

response it must give
• An unexpected call signals an error
• We can ask if all expected calls

were made

How to code one?
• Must have the same interface as the object it mocks
• In Xojo, it must be a subclass of the mocked class
• Unless they can both implement the same Interface

How do we substitute the
MockObject?
• “Dependency Injection”

• In the constructor: new Thing(mockFoo)  
Most verbose approach

• In a setter: thing->setFoo(mockFoo)  
Must define a new accessor

• Using global state: #if BuildConstants.kIsUnitTestBuild  
Not an injection, only works for Singletons

Generic Mock Objects
• In Lightspeed OnSite, we intercept calls to

LSSDatabase and send them to LSDatabaseMock
• Convenient, but ugly and clumsy
• Works because LSSDatabase is a singleton
• Better approach: factor out the mocking logic
• Mock any class by dropping in a mocking object as a

property

Logic Flow

Pieces of the Puzzle
• XURequest: a function call with its arguments
• XUReply: what the function call returns
• XUExpectation: request + reply
• XUExpectationList: a list of expectations
• XUMockingObject: holds expectations (which must be

met) and stubs (which may be met)

ParamArray
• Used in a Function statement to indicate that an

arbitrary number of parameters can be passed
• Function Foo(ParamArray nums As Integer) As Integer

• Foo(1, 2, 3, 7, 99) // 5 arguments  
Foo(3, 0) // 2 arguments  
Foo(3, “a”) // Won’t compile! Not the same type

• We need to pass an arbitrary number of parameters of
arbitrary type

Variants
• A Variant is a special data type in Xojo that can contain

any type of data, including arrays
• Parameters of a method call = an array of Variants
• Use ParamArray to write them in a natural fashion

XURequest
• m_methodName As String

• m_arguments() As Variant

• makeRequest(method_name As String,
ParamArray args as Variant)

• The syntax is simple: 
XURequest.makeRequest(“open”, 5, “a”)

XUReply
• m_content As Variant

• Shared method None which returns the shared
property s_None = XUReply(nil)

• XUReply.None

XUExpectation
• m_request As XURequest

• m_reply As XUReply

• A bit verbose: new XUExpectation  
(XURequest.makeRequest(“open”, 5, “a”),
XUReply.None)

• We will improve this in the mock object

XUExpectationList
• m_list() As XUExpectation

• addExpectation(exp As XUExpectation)

• consumeRequest(req As XURequest,
remove_expectation As Boolean) As
XUReply

• consumeRequest(req, true) for expectations 
consumeRequest(req, false) for stubs

XUMockingObject
• m_expectations As XUExpectationList  

(Expectations are removed once invoked)

• m_stubs As XUExpectationList  
(Stubs are not removed when invoked)

• addExpectation(…)

• addStub(…)

• expect(method As String, args() As Variant)

• consumeRequest(req As XURequest) As XUReply (consumes
a stub if it can, otherwise consumes an expectation)

• validate (logs any unmet expectations)

Mocking an Object
• Add a MockingObject as a property
• Intercept calls: ask the mocker to consume them

instead, and return its reply
• Foo.open(id As Integer, s As String) As Integer

• MockFoo.open(id As Integer, s As String) As Integer  
req = makeRequest(“open”, id, s)  
Dim reply As XUReply = m_mocker.consumeRequest(req)  
return reply.m_content.integerValue()

Mocking an Object (2)
• Define methods to create Expectations in MockFoo
• expect(name As String, ParamArray args As Variant)  

 Dim request As new Request(name, args)  
 mocker.addExpectation(request, Reply.None)

• expect_draw(x As Double, y As Double, s As String)  
 self.expect(“draw”, x, y, z)

• mock.expect_draw(0.0, -5.0, “Bottom”)  
mock.expect_draw(5.0, 0.0, “Right”)  
mock.expect_draw(0.0, 5.0, “Top”)  
mock.expect_draw(-5.0, 0.0, “Left”)

Our Classes Flies in the Ointment

• Properties
• Object Parameters
• Operator_compare

Properties
• Property access is not a function call: a mock object

can’t intercept setting/getting a property.
• “Yes it can! Define them as computed properties in the

mock subclass!”
• Bad news: those aren’t the same properties, even if

they have the same names.

Method Signatures
• A generic MockingObject has to handle an array of

Variants for the method signature
• But request signature matching can’t handle arbitrary

objects, e.g. Foo(bar As Bar)
• Using Reflection to find a comparison method might

work, but this is going too far
• Solution: don’t use a generic MockingObject in your

MockFoo

Comparisons
• Let’s intercept calls to foo(c As Coords) where Coords is a

pair of Doubles
• Use expect_foo(c As Coords) and do 

if c = expected_coords then ...
• Define Coords.Operator_compare, which returns -1, 0 or 1 to

define a total ordering on instances
• How to compare 2-dimensional vectors? Xojo docs say: use

their lengths…

• … which means that (0, 2) = (1.41, -1.41)

Where to use Mock
Objects?
• Use a XUMockingObject to intercept method calls with

simple parameters or arrays of such
• For methods with messier signatures, break down

objects into their component properties when doing
comparisons  
return lhs.x = rhs.x and lhs.y = rhs.y and ...

• Property access cannot be intercepted unless the
mocked object itself uses computed properties

Design for Mocking
• Extract an interface
• Use computed properties, not direct access
• This is what you should be doing for big, expensive

objects anyway!

Q & A
Yves Meynard

yves.meynard@lightspeedhq.com

Give us feedback on this session in the XDC app!

