
Distributing
Your Xojo App
Using Xcode

Jim McKay
Owner
piDog Software

Benefits
• Simple CodeSigning and Entitlements Setup
• Built-in Notarization
• Export for distribution or submit to the AppStore!
• Crash Logs show up in your Organizer.
• Profile your code with Instruments.app
• When Apple changes something…

Requirements
• Xojo
• Xcode
• Apple Developer Account
• Signing Certificates
• Register Bundle IDs with Apple
• Auto Increment Version in Xojo!

Initial Setup
1.Create a new Xcode project.
2.Select the Cocoa App template.
3.Enter your project info.
4.Save the new project to the Desktop.
5.Close the Xcode project.
6.Drop the contents of the folder next to your Xojo project file.
7.Delete the Xcode project folder.

New Friends

Clean Up Xcode
1. Open the .xcodeproj file
2. Delete everything in the folder in the navigator except

the entitlements and plist.
3. Things should look pretty simple.

1. Select the File->Project Settings menu
2. Click the Advanced button
3. Select Custom / Absolute for the Build Location
4. Click the folder icon next to Products and navigate to

the OS X 64 folder in your Xojo Builds folder.
5. Create a new folder. I'll call it Xcode.
6. You can place the other folders where you like, but

selecting the same folder is fine.

Products Location
(Optional)

1. With your app target selected, go to Build Settings.
2. In the search box, enter “signing flags”
3. Add —deep and —force to the flags.
4. Go to the Capabilities section and set any

sandboxing/entitlements and hardened runtime
setting you require.

5. Back in the General section, be sure your team is
selected under signing.

Codesign/Entitlements

1. Go to the Build Phases section.
2. Clear it out.
3. Ignore the grim warnings.
4. Select Editor->Add Build Phase->Add Run Script

Build Phase.

Build Setup

Remove the Compile/Link/Copy steps.

Add the Script

#This script uses ditto to copy the app into the location Xcode expects
while removing finder attributes and any 32bit code.
#It also grabs the app category and writes it back into the new bundle

PLISTPATH="${BUILT_PRODUCTS_DIR}/${WRAPPER_NAME}/Contents/Info.plist"
CATEGORY=$(defaults read "${PLISTPATH}" LSApplicationCategoryType)

DEST_PATH="${BUILT_PRODUCTS_DIR}/${WRAPPER_NAME}"

ditto --norsrc --arch x86_64 "$XOJO_BUILD_LOCATION" "$DEST_PATH"

defaults write "$PLISTPATH" LSApplicationCategoryType "$CATEGORY"

This script uses ditto to copy the app into the location Xcode
expects while removing finder attributes and any 32bit code.

It also grabs the app category and writes it back to the new bundle.

Optional Script

#This script changes the info.plist to comply with Apple's standard way of using a build number in
the CFBundleVersion

DEST_PATH="${TARGET_BUILD_DIR}/${WRAPPER_NAME}"
PLISTPATH="${DEST_PATH}/Contents/Info.plist"

BUNDLE_VERSION=$(defaults read "$PLISTPATH" CFBundleVersion)
echo "Bundle version=${BUNDLE_VERSION}"

REGEX="([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)"
if [[$BUNDLE_VERSION =~ $REGEX]]
then
BUNDLE_VERSION="${BASH_REMATCH[1]}.${BASH_REMATCH[2]}.${BASH_REMATCH[5]}"
BUNDLE_SHORT_VERSION="${BASH_REMATCH[1]}.${BASH_REMATCH[2]}.${BASH_REMATCH[3]}"

defaults write "$PLISTPATH" CFBundleVersion $BUNDLE_VERSION
defaults write "$PLISTPATH" CFBundleShortVersionString $BUNDLE_VERSION

echo "Writing bundle version CFBundleVersion=${BUNDLE_VERSION} CFBundleShortVersionString=$
{BUNDLE_VERSION}"

fi

This script updates the info.plist to comply with
Apple's standard way of using a build number in

the CFBundleVersion

Back to Xojo
We'll automate the build processes with a script!
Add this as a post-build script for release and builds will
automatically show up in the origanizer

dim setAppPath as string = "export
XOJO_BUILD_LOCATION="""+CurrentBuildLocationNative+"/"+CurrentBuildAppName+".app"";"

call doshellcommand(setAppPath + "cd ""$PROJECT_PATH""; xcodebuild clean > build_log.txt")
call doshellcommand(setAppPath + "cd ""$PROJECT_PATH""; xcodebuild >> build_log.txt")
call doshellcommand(setAppPath + "cd ""$PROJECT_PATH""; xcodebuild archive >> build_log.txt")

Archive and Organize
Select Window->Organizer to see the result!

Where Now?
From the Organizer you can:

• Submit to the Mac App Store
• Export for direct distribution
• Verify with Apple
• View Crash logs submitted by users

Running in the Sand(box)
We need a “Scheme” to be able to run a script after the
bundle is built and signed.
1. Go to Product->Scheme->New Scheme
2. We’ll call it Debug
3. Select our myCoolAppDebug product.

Add the Script

1. Select the new Scheme and edit scheme
2. Add a Run Script to Post Actions of Build.
3. This one’s pretty simple…

BUILD_PATH="$BUILT_PRODUCTS_DIR/$WRAPPER_NAME"

rm -r "$XOJO_BUILD_LOCATION"
mv "$BUILD_PATH" "$XOJO_BUILD_LOCATION"

Allow Debugging
For the debug app to connect to Xojo, it needs to open a
connection.
1. Add a new Entitlements file to the Xcode Project
 Copy/Paste in the Finder is the simplest way.
2. Go to Capabilities.
3. Turn on Sandbox.
4. Check Outgoing Connections
5. Copy those settings to the new entitlements file.
6. Set the new Entitlements for Debug in Project Settings

Add a script
Now we’ll need a script that puts the debug app back in
place for Xojo to be able run it.
1. Go to Product->Scheme->Edit Scheme
2. Go to the Build->Post-actions section.
3. Click the + and select New Run Script Action.
4. Add a script to move the app back for debugging.

BUILD_PATH="$BUILT_PRODUCTS_DIR/$WRAPPER_NAME"

rm -r "$XOJO_BUILD_LOCATION"
mv "$BUILD_PATH" "$XOJO_BUILD_LOCATION"

Back to Xojo (again)
Ask Xcode to build our debug app with the new scheme.
Add a Build Script to Xojo for debug.

dim setAppPath as string = "export
XOJO_BUILD_LOCATION="""+CurrentBuildLocationNative+"/"+CurrentBuildAppName+".app"";"

call doshellcommand(setAppPath + " cd ""$PROJECT_PATH""; xcodebuild -scheme Debug > debug_log.txt")

Run the app in Xojo and check the debug app for
entitlements!

What about iOS?

• Xojo already handles iOS!
• Dump ApplicationLoader!
• Automatic certificate handling.
• Automate Archiving.
• Keep up with Apple!

Just a few differences…

• iOS bundles have their plist at the top level.
• Stripping code is not needed and can break things.

Add the Script

#This script uses ditto to copy the app into the
location Xcode expects while removing finder
attributes.

DEST_PATH="${BUILT_PRODUCTS_DIR}/${WRAPPER_NAME}"

ditto --norsrc "$XOJO_BUILD_LOCATION" "$DEST_PATH"

New Build Script for iOS

Add a Build Script

Have Xojo run the Xcode clean / build / archive for us.

dim setAppPath as string = "export XOJO_BUILD_LOCATION="""+CurrentBuildLocationNative+"/"+CurrentBuildAppName+".app"";"

call doshellcommand(setAppPath + "cd ""$PROJECT_PATH""; xcodebuild clean -scheme iostestapp > build_log.txt")
call doshellcommand(setAppPath + "cd ""$PROJECT_PATH""; xcodebuild -scheme iostestapp >> build_log.txt")

Run the app in Xojo and check the organizer in Xcode!

Xcode Project Templates

Visit:

https://bitbucket.org/pidog/xcode-templates-for-xojo

Q & A
Jim McKay

jim@pidog.com

Give us feedback on this session in the XDC app!

