
Avoid Troubleshooting Troubles:
Effective Debugging Techniques
to Help You Get Unstuck

Paul Lefebvre
Xojo, Inc.

 Kent Beck

 “Make it Work
 Make it Right

 Make it Fast(er)”

Make it Work
• Get something to happen
• Proof of concept
• It compiles!
• It runs!
• It does what you expect!
• Once
• Ship it!

Make it Right
• Improve the code
• Error handling
• Edge cases
• Testing!

Make it Fast
• Not talking about this now
• Come to Virtuous Code Optimization session to

learn more
• Friday at 9am

What if you get stuck?
• Take a break, take a breath, take a walk
• Step away
• Get some sleep

What are expections?
• To know if something works, you have to know what you

want it to do
• To know if something is fixed you have to know what was

wrong
• Think about what you expected to happen
• Then read the code and see if that is what is happening
• Step through the code with the Debugger

Debugger
• Don’t ignore the Debugger
• It’s the first resort not the last resort
• Set breakpoints
• Use Break command
• Breakpoint in Computed Property
• Step through code to watch variable values change
• Step Over
• Step Out
• Verify expectations
• Getting a file error? Verify that the FolderItem actually refers to the file

you think it does

Rubber Ducking
• Explaining the situation/problem to someone else
• This can literally be a “rubber duck” at your desk
• I have a “Darth Vader” stress ball for this purpose
• Explaining to another forces you to dig deeper into your

understanding and can often reveal a solution that was
previously overlooked

Logging
• The debugger is great, but not for everything
• Not as useful for

• long-running tasks
• shipping apps
• graphics drawing

• Use a Log
• System.DebugLog
• View in IDE Messages panel

Simplify Code
• Remove “one-liners”

• They are harder to debug
• Use interim variables
• Multiple things happening per line is more complex than

one thing happening per line
• Split into multiple methods
• This is a great way to verify expectations

Isolate Code
• Long methods can be

confusing
• Split things into smaller

chunks of code and separate
methods

• Once you’ve narrowed things
down to a specific method
you’ll be in a better position
to find and fix a problem

• Code Editor Convert to
Method

Consider Alternatives
• There are always multiple ways to solve a problem
• Try a totally different approach
• Don’t stick with your original idea “just because”

Check for errors
• Always check for errors
• Such as with Databases or File I/O
• Use Error property
• Catch Exceptions

Try
 xml.LoadXml(xmlFile)
Catch e As XmlException
 MsgBox("XML error: " + e.Message)
End Try

Unit Testing
• Repeatable tests that are run to verify code and any

changes work as expected
• XojoUnit

• Free and open-source
• github.com/xojo/XojoUnit

• Or roll your own
• If you find a bug, fix it and add a test for it
• Test-Driven Development

Separate Project
• Create a separate project to test
• Isolating a problem can help you focus
• Easier to share and demonstrate with others

Version Control
• Free yourself with Version Control or Source Control

• Git or Subversion
• Use with Text project format (Xojo Project)

• You won’t be afraid to make changes
• Don’t be afraid to completely redesign something in order

to fix it or make it better
• You can always get back to the original version

• As my grandfather said:
• “You can’t break it twice, Paul.”

Demo

Q & A
Paul Lefebvre

paul@xojo.com

Give us feedback on this session in the XDC app!

