Donald Knuth

Virtuous Code Optimization ‘Premature
code optimization is the
Paul Lefebvre I’OO’[Of a” eV””

Make it Work

* Get something to happen
* Proof of concept

* |t compiles!

e ltruns!

* |t does what you expect!

Kent Beck

Make it Right Make it Fast

Improve the code Relies on prior steps!
Error handling , May already be fast enough
Edge cases Ensures you have a baseline to compare with
Testing! Risks
» Can waste precious developer time
» Can introduce bugs

* Improvements may not be noticeable

How to get started?

Big O Notation Profiler

* A way to describe an algorithm performance * Help you find code with possible performance concerns
» Popularized by Donald Knuth » Use directly from IDE

* O1), O(n), O(nz), O(log n) * Project -> Profile Code
» StartProfiler, StopProfiler commands

1000000

* Use in built apps

* Creates Text File

+ Kem Tekinay’s open-source viewer

* github.com/ktekinay/Profile-Reader

» docs.xojo.com/UserGuide:Code_Profiler

Switch Algorithms 64-bit, Aggressive

Remember Big O Switch to 64-bit with its optimizing LLVM compiler
Find another algorithm that is faster Great for math-heavy code

Drastic difference with Sorting Only use Aggressive mode for final builds and
5 performance testing
* Bubble Sort O(n%)

» Avoid for general development as building is often
» Merge Sort O(n log n)

slower

Inline Methods

Methods that are called a lot can have a measurable
performance hit

« Due to compiler stack management

Inline method to eliminate this

» Copy method code within another method
* Not as re-usable and risks bugs

» Use judiciously

Reduce Loop
Calculations

* Loops are primary source of performance problems
» Reduce calculations done within a loop
* |dentify “invariants” and set them outside of loop
« Invariant: Value that does not change
« Dim variables outside loops

Unit Testing

* Important to ensure that optimizations have the same
results

» Xojo Unit
» Free and open-source
+ github.com/xojo/XojoUnit

» Displays timing for test methods

Reduce Loop
Calculations

Do
Dim specialValue As String
specialValue = GetValue
Dim value As Boolean
value = DoOtherStuff(specialValue)
Loop Until value = True

Dim specialValue As String
specialValue = GetValue
Dim value As Boolean
Do

value = DoOtherStuff(specialValue)
Loop Until value = True

Limit String
Concatenation

* Sometimes changes can result in worse performance Strings are immutable

Test Before & After

» Verify that results are the same * A “modification” actually creates a new string
 Unit Testing is great for this » Alternatives:
* No one wants it fast if it's wrong » Split/Join
» Append values to array
* Join into single String later
* MemoryBlock

» Examples/Advanced/MemoryBlock/
FastStringAppend

SQLite Database Better Data Structures

A database is a fast way to find data Pair

Much better than repeated linear searches through an Linked List

e Dictionary

In-memory DB can be speedy once configured Binary Tree

Or use large cache with DB

Don’t Be Evil — Be
Virtuous

» Optimize only after things are working

» Start with Profiler
* Unit Test to verify Results

» Apply tips as appropriate

Q&A

Paul Lefebvre

paul@xojo.com

Give us feedback on this session in the XDC app!

