
Virtuous Code Optimization

Paul Lefebvre
Xojo, Inc.

“Premature
code optimization is the

root of all evil”

Donald Knuth

 Kent Beck

 “Make it Work
 Make it Right

 Make it Fast(er)”

Make it Work
• Get something to happen
• Proof of concept
• It compiles!
• It runs!
• It does what you expect!
• Once
• Ship it!

Make it Right
• Improve the code
• Error handling
• Edge cases
• Testing!

Make it Fast
• Relies on prior steps!
• May already be fast enough
• Ensures you have a baseline to compare with
• Risks

• Can waste precious developer time
• Can introduce bugs
• Improvements may not be noticeable

• How to get started?

Big O Notation
• A way to describe an algorithm performance
• Popularized by Donald Knuth

• O(1), O(n), O(n2), O(log n)

Profiler
• Help you find code with possible performance concerns
• Use directly from IDE

• Project -> Profile Code
• StartProfiler, StopProfiler commands

• Use in built apps
• Creates Text File
• Kem Tekinay’s open-source viewer

• github.com/ktekinay/Profile-Reader
• docs.xojo.com/UserGuide:Code_Profiler

Demo Tips

Switch Algorithms
• Remember Big O
• Find another algorithm that is faster
• Drastic difference with Sorting

• Bubble Sort O(n2)
• Merge Sort O(n log n)

64-bit, Aggressive
• Switch to 64-bit with its optimizing LLVM compiler
• Great for math-heavy code
• Only use Aggressive mode for final builds and

performance testing
• Avoid for general development as building is often

slower

Inline Methods
• Methods that are called a lot can have a measurable

performance hit
• Due to compiler stack management

• Inline method to eliminate this
• Copy method code within another method
• Not as re-usable and risks bugs
• Use judiciously

Unit Testing
• Important to ensure that optimizations have the same

results
• Xojo Unit

• Free and open-source
• github.com/xojo/XojoUnit

• Displays timing for test methods

Reduce Loop
Calculations
• Loops are primary source of performance problems
• Reduce calculations done within a loop

• Identify “invariants” and set them outside of loop
• Invariant: Value that does not change

• Dim variables outside loops

Reduce Loop
Calculations

Do
 Dim specialValue As String
 specialValue = GetValue
 Dim value As Boolean
 value = DoOtherStuff(specialValue)
Loop Until value = True

Dim specialValue As String
specialValue = GetValue
Dim value As Boolean
Do
 value = DoOtherStuff(specialValue)
Loop Until value = True

Test Before & After
• Sometimes changes can result in worse performance
• Verify that results are the same

• Unit Testing is great for this
• No one wants it fast if it’s wrong

Limit String
Concatenation
• Strings are immutable
• A “modification” actually creates a new string
• Alternatives:

• Split/Join
• Append values to array
• Join into single String later

• MemoryBlock
• Examples/Advanced/MemoryBlock/

FastStringAppend

SQLite Database
• A database is a fast way to find data
• Much better than repeated linear searches through an

array
• In-memory DB can be speedy once configured
• Or use large cache with DB

Better Data Structures
• Pair
• Linked List
• Dictionary
• Binary Tree

Don’t Be Evil — Be
Virtuous
• Optimize only after things are working
• Start with Profiler
• Unit Test to verify Results

• Apply tips as appropriate

Q & A
Paul Lefebvre

paul@xojo.com

Give us feedback on this session in the XDC app!

