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“Premature 
code optimization is the 

root of all evil” 

Donald Knuth

 Kent Beck

 “Make it Work 
 Make it Right 

 Make it Fast(er)”

Make it Work
• Get something to happen 
• Proof of concept 
• It compiles! 
• It runs! 
• It does what you expect! 
• Once 
• Ship it!



Make it Right
• Improve the code 
• Error handling 
• Edge cases 
• Testing!

Make it Fast
• Relies on prior steps! 
• May already be fast enough 
• Ensures you have a baseline to compare with 
• Risks 

• Can waste precious developer time 
• Can introduce bugs 
• Improvements may not be noticeable 

• How to get started?

Big O Notation
• A way to describe an algorithm performance 
• Popularized by Donald Knuth 

• O(1), O(n), O(n2), O(log n)

Profiler
• Help you find code with possible performance concerns 
• Use directly from IDE 

• Project -> Profile Code 
• StartProfiler, StopProfiler commands 

• Use in built apps 
• Creates Text File 
• Kem Tekinay’s open-source viewer 

• github.com/ktekinay/Profile-Reader 
• docs.xojo.com/UserGuide:Code_Profiler



Demo Tips

Switch Algorithms
• Remember Big O 
• Find another algorithm that is faster 
• Drastic difference with Sorting 

• Bubble Sort O(n2) 
• Merge Sort O(n log n)

64-bit, Aggressive
• Switch to 64-bit with its optimizing LLVM compiler 
• Great for math-heavy code 
• Only use Aggressive mode for final builds and 

performance testing 
• Avoid for general development as building is often 

slower



Inline Methods
• Methods that are called a lot can have a measurable 

performance hit 
• Due to compiler stack management 

• Inline method to eliminate this 
• Copy method code within another method 
• Not as re-usable and risks bugs 
• Use judiciously

Unit Testing
• Important to ensure that optimizations have the same 

results 
• Xojo Unit 

• Free and open-source 
• github.com/xojo/XojoUnit 

• Displays timing for test methods

Reduce Loop 
Calculations
• Loops are primary source of performance problems 
• Reduce calculations done within a loop 

• Identify “invariants” and set them outside of loop 
• Invariant: Value that does not change 

• Dim variables outside loops

Reduce Loop 
Calculations

Do 
  Dim specialValue As String 
  specialValue = GetValue 
  Dim value As Boolean 
  value = DoOtherStuff(specialValue) 
Loop Until value = True

Dim specialValue As String 
specialValue = GetValue 
Dim value As Boolean 
Do 
  value = DoOtherStuff(specialValue) 
Loop Until value = True



Test Before & After
• Sometimes changes can result in worse performance 
• Verify that results are the same 

• Unit Testing is great for this 
• No one wants it fast if it’s wrong

Limit String 
Concatenation
• Strings are immutable 
• A “modification” actually creates a new string 
• Alternatives: 

• Split/Join 
• Append values to array 
• Join into single String later 

• MemoryBlock 
• Examples/Advanced/MemoryBlock/

FastStringAppend

SQLite Database
• A database is a fast way to find data 
• Much better than repeated linear searches through an 

array 
• In-memory DB can be speedy once configured 
• Or use large cache with DB

Better Data Structures
• Pair 
• Linked List 
• Dictionary 
• Binary Tree



Don’t Be Evil — Be 
Virtuous
• Optimize only after things are working 
• Start with Profiler 
• Unit Test to verify Results 

• Apply tips as appropriate
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