
Source control: a tool for
every developer

Deblauwe Gino & Dirk Cleenwerck
Use It Group

😇 Questions after the last slide please

Some say…
• I have a daily backup, so I’m protected
• I work alone
• It’s too expensive
• Source control is too complex, I don’t understand
• It’s too much work

But did you …
• Ever come in a situation where you have to find a bug

that was probably introduced 3 versions ago?
★What was changed back then?
★By who?
★ And why?

And did you …
• Ever come in a situation where some developer claims

that he did not cause that bug?
• Ever come in a situation where someone asks you

what in your software changed in the last year to better
their lives. Also known as “what do I pay you for?”

• Ever come in a situation that you really need to release
a critical bugfix, but you’re in the middle of creating
new functionality?

• …

And did you know …
• It’s cheap:
★ If installed on your server, systems like git and subversion are

free
★ Free for teams up to 3 developers / 7$ monthly for more on github  

https://github.com/pricing#feature-comparison
★ Free on gitlab without support and basic functionality 

https://about.gitlab.com/pricing/
★ Free on bitbucket for up to 5 developers /2$ monthly for each

developer for more 
https://bitbucket.org/product/pricing

★Or if you want more choice: 
https://www.slant.co/topics/153/~best-hosted-version-control-services

But wait, there’s more …
• You can also use source control for analysis and

documentation so you can see what was in customer
documentation back then at that release. Or retrieve
specs from that point in time.

• Setting up source control can be done within minutes

So to end the sales pitch:
Why use source control?
• It makes working together in a team a lot easier
• You can keep track of code changes and compare

versions if you need to
• Every commit you are advised to add a comment so in

the future you have a log what was done
• You can undo changes that proved to be a bad idea
• You can create different versions (branches) of your

software (at least: ‘development’ and ‘production’)
• There is at least 1 up to date backup of your entire

project

Which version control do
we choose?
There are 2 major systems for now:
• Client-Server systems like

+ subversion
+ cvs
+ visual sourcesafe

• Distributed systems like
+ git
+ mercurial

Which version control do
we choose?
• Client-Server systems:

+ You can lock parts of the source, no one else works
on it until you’re done.

• Distributed systems:
+ Faster to commit since you commit locally
+ Available offline
+ No single point of failure

Which version control do
we choose?
• Both subversion and git are actively developed

Which version control do
we choose?
• Both are frequently used by developers in combination

with Xojo
• Both can be used from the command line 

http://svnbook.red-bean.com/en/1.7/svn.ref.svn.html 
http://git-scm.com/book/en/v2/Getting-Started-The-Command-Line

• Both have clients to make life easier 
https://en.wikipedia.org/wiki/Comparison_of_Subversion_clients 
https://git-scm.com/downloads/guis

Which version control do
we choose?
So in short, between subversion en git there are no bad
choices.

Git can also be used offline
Subversion supports file locking out of the box  

All other features are available on both systems or easily
configured in another way.

Just 1 warning about
sharing code
Regardless of using sourcecontrol or not.
Xojo does never reload your code after opening a project,
so always close your project before fetching the new
version.
Otherwise you can overwrite changes another developer
posted.
And sourcecontrol will blame you in the history.

Github
1) Go to https://github.com
2) Create an account

Github
1) Go to https://github.com
2) Create an account
3) Start a project

Github
1) Go to https://github.com
2) Create an account
3) Start a project
4) Enter a project description, ... push create repository

Github
1) Go to https://github.com
2) Create an account
3) Start a project
4) Enter a project description, ... push create repository
5) Install Github Desktop from https://desktop.github.com

Github
1) Go to https://github.com
2) Create an account
3) Start a project
4) Enter a project description, ... push create repository
5) Install Github Desktop from https://desktop.github.com
6) Follow the wizard

Github
1) Go to https://github.com
2) Create an account
3) Start a project
4) Enter a project description, ... push create repository
5) Install Github Desktop from https://desktop.github.com
6) Follow the wizard
7) Set up your local project

Github
1) Go to https://github.com
2) Create an account
3) Start a project
4) Enter a project description, ... push create repository
5) Install Github Desktop from https://desktop.github.com
6) Follow the wizard
7) Set up your local project
8) Start working on your project

Installing Subversion on
Ubuntu 18.04

• sudo apt-get install subversion 

• or if you will access subversion over http 
 
sudo apt-get install subversion libapache2-svn

make a directory for svn
and one for the repositories

• sudo mkdir /usr/local/svn

• sudo mkdir /usr/local/svn/repos

• Make a group for your svn users 
 
sudo groupadd svn

• Change group ownership of the repositories
directory to the new group 
 
sudo chgrp svn /usr/local/svn/repos

Adding users
• Give members of the svn group write access to the repositories

directory  
 
sudo chmod g+w /usr/local/svn/repos

• Set the group-ID of the repositories directory so that new file
create here will be owned by the group 
 
sudo chmod g+s /usr/local/svn/repos

Adding users

Adding users
• Add yourself to the svn group (add other users as necessary)  
 
sudo usermod -a -G svn dirk  

• Log out and back in to check you belong to the group  
 
groups 

• (you should see the svn group among the groups you are a
members off)

Create a repository for your project
(change umask so users of the svn
group will have write access)

• sudo svnadmin create /usr/local/svn/repos/myproject  

• sudo chgrp svn /usr/local/svn/repos/myproject 

• sudo chmod g+w /usr/local/svn/repos/myproject  

• sudo chmod g+s /usr/local/svn/repos/myproject

configure subversion to allow
access through the custom
protocol (svn://)

• We do this by editing svnserve.conf. Each repository has its
own settings file.  
 
sudo nano /usr/local/svn/repos/myproject/conf/svnserve.conf  

• Put the following rules in the svnserve.conf file 
 
anon-access = none 
auth-access = write 
password-db = passwd

configure subversion to allow
access through the custom
protocol (svn://)

Set user passwords

• After changing the .conf file you can add the user list to
the passwd file that can be found in the same directory. 
 
sudo nano /usr/local/svn/repos/myproject/conf/passwd 

• add users using the following syntax. 
 
username = password

configure subversion to allow
access through the custom
protocol (svn://)

Protect password file
• Since the passwords are stored unencrypted, it's

important that you protect the passwords file by
setting the proper permissions. The file should not
be readable by anyone except the owner (which is
root), so change its mode to 600: 
 
chmod 600 /usr/local/svn/repos/myproject/conf/passwd

Make sure the svn
server runs on startup

• Download the svnserve script 
wget http://odyniec.net/articles/ubuntu-subversion-server/svnserve

• Place the script in /etc/init.d 
sudo cp ./svnserve /etc/init.d

• Make the script executable 
sudo chmod +x /etc/init.d/svnserve

• if you chose anything other than /usr/local/svn/repos for the
repository directory, make sure to change the path in the init
script

Make sure the svn
server runs on startup
• run update-rc.d to install the script 
 
sudo update-rc.d svnserve defaults  

• That’s it. svnserve will be started automatically when
your system boots up.

• To start it manually, run 
 
sudo /etc/init.d/svnserve start  

Make sure the svn
server runs on startup

• Installing Subversion on an Ubuntu server takes
about 20 commands including editing the
configuration files

• Estimated time to install is under 10 minutes 

Install and start SmartSVN
https://www.smartsvn.com/

Install and start SmartSVN
https://www.smartsvn.com/

Install and start SmartSVN
https://www.smartsvn.com/

Select “My repositories are already set up”

Select “Import project into repository”

Import your project

Select your local folder that you want to import

Import your project
Select your repository (we’re using svn+ssh)

Import your project

Authenticate with your ssh credentials

Import your project
Make a directory for your project and
create the default project structure

Import your project

Select the trunk of your new directory

Import your project
Add the project in group “sorted group”

and click Import

Import your project

Commit your project
Commit your files to the repository.

Select “fully recursive” Enter a commit message and Commit

Commit your project

Set ‘Needs Lock’
Select all your files and select 

Locks -> Change ‘Needs Lock’

Set ‘Needs Lock’

The files in the repo now need to be locked to be able to work
on them. As long as you have not locked a file, it’s read-only. If
you want to work on a file, then lock it. Other people in your

team will not be able to work on that file till you either unlock it,
or commit your changes.

Set ‘Needs Lock’
Commit the fact that the files need a lock

to the repository.

Add other team members
Other team members can get the project
from the repository. Just make sure they

select the trunk of the project.

Reviewing changes
SmartSVN shows you the changes, so that you
can review them before committing or reverting

Reviewing changes
If you work with the xml format for your Xojo program, you

can use Arbed to show you the code differences
(http://www.tempel.org/Arbed/Arbed)

Reviewing changes
This is how SmartSVN shows you the
difference in code for an xml project

Reviewing changes
This is how Arbed shows you the
difference in code for an xml project

Reviewing changes
You can view a log of the changes to a file

Reviewing changes
You can view a log (graph) of the revisions

Q & A
Gino Deblauwe & Dirk Cleenwerck

gino@useitgroup.com

dirk@useitgroup.com

Give us feedback on this session in the XDC app!

